Water Footprints of Milk

Upali Amarasinghe International Water Management institute

Dairy Asia. Towards Sustainability Venue: Meeting Room Star 29, Hotel Plaza Athene 21-23 May, 2014

A water-secure world

Water Footprints of Milk

Outline

- What are water footprints?
- Why milk water footprints?
- Water for milk production some examples
- Sustainable milk production some a

A water-secure world

What are water footprints? - what we hear everyday are water footprints of different products

1,800 liters per 1 kg of wheat

2,500 liters per 1 kg of rice

15,400 liters per 1 kg of beef

A water-secure world

What we hear everyday--

Water Manager

Insti

Water footprints of products in different countries

	Product	M ³ per 1000 Kcal	M ³ of water for daily consumption			
			Asia	South Asia	India	
		679	528	485	468	
		589	311	311	284	
		1,443	101	127	119	
onal nent tute		8,800	185	108	62	

What are water footprints?

- Consumptive water use (CWU) in the production process

Water productivity (WP) = AP/OA Water footprints (WFP) = OA/AP

WFP = 1/WP

Eg. WP of a product

 $WP = 0.5 \text{ kg/m}^3$

 $WFP = 2 \text{ m}^{3}/\text{kg} = 2000 \text{ m}^{3}/\text{ton}$

A water-secure world

Water footprints components

- Green and Irrigation WFP

- **Green WFP** = (rainfall CWU / production)
- **Blue WFP** = (irrigation CWU/ production)
- There are issues with green and irrrigation WFP, especially with the denominator
- Not all rainfall CWU contributes to total production, except in rainfed areas
- Not all irrigation CWU contributes to total production, except in completely irrigated areas

WFP of Crops and milk – Direct and indirect water use

WFP		Direct water use +		Indirect water use	
	Green =	na +	ł	CWU from soil moisture in fodder and other feed crops	
$WFP_{Milk} = \langle$	Irrigation =	Drinking/servicing of + animals	ł	CWU from irrigation in fodder and other feed crops	
	Grey =	na +	ł	Water pollution through input use or in by products	
	Green =	CWU from soil moisture + in crop production	ł	na	
$WFP_{Crop^1} =$	Irrigation =	CWU from irrigation + water in crop production	ł	na	
	Grey =	Water pollution from + input use or in byproducts	F	na	
「「「「」」」 International Water Management Institute		A water-secure wond www.iwmi.org			

Why water for milk is important fro Asia?

Milk production

Region/ country	Production (M Tonnes)	% of total				
Asia	280					
South Asia	178	<mark>。</mark> 64%				
India	125	45%				
Pakistan	38	14%				
South Asia contributes to 2/3 of the production						

Why water for milk is important?

Major milk producing areas:

- under severe water stress and
- unsustainable groundwater use
- high poverty

A water

milk production is a substantial part of the income

WFP Examples - Moga district in Punjab, India

- Rapid groundwater depletion
- Substantial crop and milk production depends on unsustainable GW exploitation

WFP Examples" Moga district in Punjab, India

Commodity	Water Footprint (m3/ton)					
	Green	Irrigation		Grey		
		Canal	Groundwater			
Milk	58	-	882 (94%)	143		
Wheat	17	42	495 (90%)	74		
Rice	346	50	984 (71%)	195		

WFP Examples" Moga district in Punjab, India

Water footprints of milk

- Green fodder 196 m3/ton
- Dry fodder 184 m3/ton
- Concentrates internal 218 m3/ton
- Concentrates External 327 m3/ton
- Drinking/bathing 15 m3/ton

A water-secure world

Impact of GW WFP in Moga

- Value of output per unit of net irrigated area
 - US\$ 4,221/ha in Milk only
 - US\$ 3433/ha in milk-wheat
 - US\$ 3081/ha in milk-wheatrice
- High dependency of milk only outputs from virtual water
- Have more milk dominated production system

A water-secure world

WFP Examples: All India groundwater CWU of crop and milk production

A water-secure world

Sustainable Dairy - Approaches

- Dairy intensive production systems with less rice area offer the most financial and hydrological benefits
 - Eg. Wheat and milk or milk only
- Import feed from low CWU areas
 - Increase virtual water imports
- Have more crossbred cows
 - Higher milk yield, but high maintenance cost
 - Yet, more value and less CWU
 - More studies to understand the optimum combination

Water Footprints of Milk

Thank you

A water-secure world

